python 用Matplotlib作图中有多个Y轴
在作图过程中,需要绘制多个变量,但是每个变量的数量级不同,在一个坐标轴下作图导致曲线变化很难观察,这时就用到多个坐标轴。本文除了涉及多个坐标轴还包括Axisartist相关作图指令、做图中label为公式的表达方式、matplotlib中常用指令。
一、放一个官方例子先
from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes import matplotlib.pyplot as plt import numpy as np fig = plt.figure(1) #定义figure,(1)中的1是什么 ax_cof = HostAxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定义axes,0 <= l,b,w,h <= 1 #parasite addtional axes, share x ax_temp = ParasiteAxes(ax_cof, sharex=ax_cof) ax_load = ParasiteAxes(ax_cof, sharex=ax_cof) ax_cp = ParasiteAxes(ax_cof, sharex=ax_cof) ax_wear = ParasiteAxes(ax_cof, sharex=ax_cof) #append axes ax_cof.parasites.append(ax_temp) ax_cof.parasites.append(ax_load) ax_cof.parasites.append(ax_cp) ax_cof.parasites.append(ax_wear) #invisible right axis of ax_cof ax_cof.axis["right"].set_visible(False) ax_cof.axis["top"].set_visible(False) ax_temp.axis["right"].set_visible(True) ax_temp.axis["right"].major_ticklabels.set_visible(True) ax_temp.axis["right"].label.set_visible(True) #set label for axis ax_cof.set_ylabel("cof") ax_cof.set_xlabel("Distance (m)") ax_temp.set_ylabel("Temperature") ax_load.set_ylabel("load") ax_cp.set_ylabel("CP") ax_wear.set_ylabel("Wear") load_axisline = ax_load.get_grid_helper().new_fixed_axis cp_axisline = ax_cp.get_grid_helper().new_fixed_axis wear_axisline = ax_wear.get_grid_helper().new_fixed_axis ax_load.axis["right2"] = load_axisline(loc="right", axes=ax_load, offset=(40,0)) ax_cp.axis["right3"] = cp_axisline(loc="right", axes=ax_cp, offset=(80,0)) ax_wear.axis["right4"] = wear_axisline(loc="right", axes=ax_wear, offset=(120,0)) fig.add_axes(ax_cof) """ #set limit of x, y ax_cof.set_xlim(0,2) ax_cof.set_ylim(0,3) """ curve_cof, = ax_cof.plot([0, 1, 2], [0, 1, 2], label="CoF", color="black") curve_temp, = ax_temp.plot([0, 1, 2], [0, 3, 2], label="Temp", color="red") curve_load, = ax_load.plot([0, 1, 2], [1, 2, 3], label="Load", color="green") curve_cp, = ax_cp.plot([0, 1, 2], [0, 40, 25], label="CP", color="pink") curve_wear, = ax_wear.plot([0, 1, 2], [25, 18, 9], label="Wear", color="blue") ax_temp.set_ylim(0,4) ax_load.set_ylim(0,4) ax_cp.set_ylim(0,50) ax_wear.set_ylim(0,30) ax_cof.legend() #轴名称,刻度值的颜色 #ax_cof.axis["left"].label.set_color(ax_cof.get_color()) ax_temp.axis["right"].label.set_color("red") ax_load.axis["right2"].label.set_color("green") ax_cp.axis["right3"].label.set_color("pink") ax_wear.axis["right4"].label.set_color("blue") ax_temp.axis["right"].major_ticks.set_color("red") ax_load.axis["right2"].major_ticks.set_color("green") ax_cp.axis["right3"].major_ticks.set_color("pink") ax_wear.axis["right4"].major_ticks.set_color("blue") ax_temp.axis["right"].major_ticklabels.set_color("red") ax_load.axis["right2"].major_ticklabels.set_color("green") ax_cp.axis["right3"].major_ticklabels.set_color("pink") ax_wear.axis["right4"].major_ticklabels.set_color("blue") ax_temp.axis["right"].line.set_color("red") ax_load.axis["right2"].line.set_color("green") ax_cp.axis["right3"].line.set_color("pink") ax_wear.axis["right4"].line.set_color("blue") plt.show()
该例子的作图结果为:
二、实际绘制
在实际使用中希望绘制的多变量数值如下表所示:
为了实现这个作图,经过反复修改美化,代码如下:
1.导入包
from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes import matplotlib.pyplot as plt
2.导入数据
x = ["ATL","LAX","CLT","LAS","MSP","DTW","PHX","DCA","SLC","ORD","DFW","PHL","PDX","DEN","IAH","BOS","SAN","BWI","MDW","IND"] k_in = [49.160,47.367,26.858,30.315,16.552,28.590,23.905,18.818,28.735,6.721,10.315,26.398,38.575,7.646,11.227,8.864,15.327,19.120,11.521,19.618] k_out = [38.024,19.974,25.011,22.050,30.108,18.327,20.811,28.464,23.72,8.470,4.119,10.000,25.158,7.851,10.450,11.130,15.441,7.519,20.819,32.825] p = [0.0537,0.0301,0.0306,0.0217,0.0229,0.0223,0.0218,0.0179,0.0155,0.0465,0.0419,0.0165,0.0091,0.0357,0.0232,0.0200,0.0129,0.0143,0.0113,0.0064] K = [4.6844,2.0296,1.5858,1.1347,1.0706,1.0442,0.9764,0.8447,0.8141,0.7066,0.6041,0.5990,0.5808,0.5534,0.5023,0.3992,0.3964,0.3799,0.3639,0.3331]
3.作图并保存,相关指令后有备注,可以帮助理解
fig = plt.figure(1) #定义figure ax_k = HostAxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定义axes,0 <= l,b,w,h <= 1 #parasite addtional axes, share x ax_p = ParasiteAxes(ax_k, sharex=ax_k) ax_K = ParasiteAxes(ax_k, sharex=ax_k) #append axes ax_k.parasites.append(ax_p) ax_k.parasites.append(ax_K) ax_k.set_ylabel("$K_i^{in};/;K_i^{out}$") ax_k.axis["bottom"].major_ticklabels.set_rotation(45) ax_k.set_xlabel("Airport") ax_k.axis["bottom","left"].label.set_fontsize(12) # 设置轴label的大小 ax_k.axis["bottom"].major_ticklabels.set_pad(8) #设置x轴坐标刻度与x轴的距离,坐标轴刻度旋转会使label和坐标轴重合 ax_k.axis["bottom"].label.set_pad(12) #设置x轴坐标刻度与x轴label的距离,label会和坐标轴刻度重合 ax_k.axis[:].major_ticks.set_tick_out(True) #设置坐标轴上刻度突起的短线向外还是向内 #invisible right axis of ax_k ax_k.axis["right"].set_visible(False) ax_k.axis["top"].set_visible(True) ax_p.axis["right"].set_visible(True) ax_p.axis["right"].major_ticklabels.set_visible(True) ax_p.axis["right"].label.set_visible(True) ax_p.axis["right"].major_ticks.set_tick_out(True) ax_p.set_ylabel("${p_i}$") ax_p.axis["right"].label.set_fontsize(13) ax_K.set_ylabel("${K_i}$") K_axisline = ax_K.get_grid_helper().new_fixed_axis ax_K.axis["right2"] = K_axisline(loc="right", axes=ax_K, offset=(60,0)) ax_K.axis["right2"].major_ticks.set_tick_out(True) ax_K.axis["right2"].label.set_fontsize(13) fig.add_axes(ax_k) curve_k1, = ax_k.plot(list(range(20)), k_in, marker ="v",markersize=8,label="$K_i^{in}$",alpha = 0.7) curve_k2, = ax_k.plot(list(range(20)), k_out, marker ="^",markersize=8, label="$K_i^{out}$",alpha = 0.7) curve_p, = ax_p.plot(list(range(20)), p, marker ="P",markersize=8,label="${p_i}$",alpha = 0.7) curve_K, = ax_K.plot(list(range(20)), K, marker ="o",markersize=8, label="${K_i}$",alpha = 0.7,linewidth=3) plt.xticks(list(range(20)), x) # ax_k.set_xticks(list(range(20))) # ax_k.set_xticklabels(x) ax_k.axis["bottom"].major_ticklabels.set_rotation(45) # ax_k.set_rotation(90) # plt.xticks(list(range(20)), x, rotation = "vertical") ax_p.set_ylim(0,0.06) ax_K.set_ylim(0,5) ax_k.legend(labelspacing = 0.4, fontsize = 10) #轴名称,刻度值的颜色 ax_p.axis["right"].label.set_color(curve_p.get_color()) # 坐标轴label的颜色 ax_K.axis["right2"].label.set_color(curve_K.get_color()) ax_p.axis["right"].major_ticks.set_color(curve_p.get_color()) # 坐标轴刻度小突起的颜色 ax_K.axis["right2"].major_ticks.set_color(curve_K.get_color()) ax_p.axis["right"].major_ticklabels.set_color(curve_p.get_color()) # 坐标轴刻度值的颜色 ax_K.axis["right2"].major_ticklabels.set_color(curve_K.get_color()) ax_p.axis["right"].line.set_color(curve_p.get_color()) # 坐标轴线的颜色 ax_K.axis["right2"].line.set_color(curve_K.get_color()) plt.savefig("10.key metrics mapping.pdf", bbox_inches="tight", dpi=800) plt.show()
4.绘制结果
PS
该作图是在Axisartist的基础上完成的,一些平时常用的绘制指令在此处是无用的。经过查找相关资料,https://www.osgeo.cn/matplotlib/tutorials/toolkits/axisartist.html 该网站可以提供一些用法的帮助。
以上就是python 用Matplotlib作图中有多个Y轴的详细内容,更多关于python Matplotlib作图的资料请关注云海天教程其它相关文章!
原文链接:https://www.cnblogs.com/Big-Big-Watermelon/p/14051994.html