Python3标准库:random伪随机数生成器

Python3标准库:random伪随机数生成器

1. random伪随机数生成器

random模块基于Mersenne Twister算法提供了一个快速伪随机数生成器。原来开发这个生成器是为了向蒙特卡洛模拟生成输入,Mersenne Twister算法会生成大周期近均匀分布的数,因此适用于大量不同类型的应用。

1.1 生成随机数

random()函数从所生成的序列返回下一个随机的浮点值。返回的所有值都落在0<=n<1.0区间内。

import random

for i in range(5):
    print("%04.3f" % random.random(), end=" ")
print()

重复运行这个程序会产生不同的数字序列。

要生成一个指定数值区间内的数,则要使用uniform()。 

import random

for i in range(5):
    print("{:04.3f}".format(random.uniform(1, 100)), end=" ")
print()

传入最小值和最大值,uniform()会使用公式min+(max-min)*random()来调整random()的返回值。

1.2 指定种子

每次调用random()都会生成不同的值,并且在一个非常大的周期之后数字才会重复。这对于生成唯一值或变化的值很有用,不过有些情况下可能需要提供相同的数据集,从而以不同的方式处理。对此,一种技术是使用一个程序生成随机值,并保存这些随机值,以便在另一个步骤中再做处理。不过,这对于量很大的数据来说可能并不实用,所以random包含了一个seed()函数,可以用来初始化伪随机数生成器,使它能生成一个期望的值集。

import random

random.seed(1)

for i in range(5):
    print("{:04.3f}".format(random.random()), end=" ")
print()

种子(seed)值会控制由公式生成的第一个值,该公式可用来生成伪随机数。由于公式是确定的,所以改变种子后便设置了将生成的整个序列。seed()的参数可用是任意的可散列对象。默认为使用一个平台特定的随机源(如果有的话)。但如果没有这样一个随机源,则使用当前时间。

1.3 保存状态

random()使用的伪随机算法的内部状态可以保存,并用于控制后续生成的随机数。如果在继续生成随机数之前恢复前一个状态,则会减少出现重复的可能性,即避免出现之前输入中重复的值或值序列。getstate()函数会返回一些数据,以后可以借助setstate()利用这些数据重新初始化伪随机数生成器。 

import random
import os
import pickle

if os.path.exists("state.dat"):
    # Restore the previously saved state
    print("Found state.dat, initializing random module")
    with open("state.dat", "rb") as f:
        state = pickle.load(f)
    random.setstate(state)
else:
    # Use a well-known start state
    print("No state.dat, seeding")
    random.seed(1)

# Produce random values
for i in range(3):
    print("{:04.3f}".format(random.random()), end=" ")
print()

# Save state for next time
with open("state.dat", "wb") as f:
    pickle.dump(random.getstate(), f)

# Produce more random values
print("
After saving state:")
for i in range(3):
    print("{:04.3f}".format(random.random()), end=" ")
print()

getstate()返回的数据是一个实现细节,所以这个例子用pickle将数据保存到一个文件;否则,它会把伪随机数生成器当作一个黑盒。如果程序开始时这个文件存在,则加载原来的状态并继续。每次运行时都会在保存状态之前和之后生成一些数,以展示恢复状态会使生成器再次生成同样的值。

第一次:

第二次:

1.4 随机整数

random()将生成浮点数。可以把结果转换为整数,不过直接使用randint()生成整数会更方便。

import random

print("[1, 100]:", end=" ")

for i in range(3):
    print(random.randint(1, 100), end=" ")

print("
[-5, 5]:", end=" ")
for i in range(3):
    print(random.randint(-5, 5), end=" ")
print()

randint()的参数是值的闭区间的两端。这些数可以是正数或负数,不过第一个值要小于第二个值。

randrange()是从区间选择值的一种更一般的形式。

import random

for i in range(3):
    print(random.randrange(0, 101, 5), end=" ")
print()

除了开始值(start)和结束值(stop),randrange()还支持一个步长(step)参数,所以它完全等价于从range(start,stop,step)选择一个随机值。不过randrange更高效,因为它并没有真正构造区间。

1.5 选择随机元素

随机数生成器有一种常见用法,即从一个枚举值序列中选择元素,即使这些值并不是数字。random包括一个choice()函数,可以从一个序列中随机选择。下面这个例子模拟硬币10000此来统计多少次面朝上,多少次面朝下。

import random
import itertools

outcomes = {
    "heads": 0,
    "tails": 0,
}
sides = list(outcomes.keys())

for i in range(10000):
    outcomes[random.choice(sides)] += 1

print("Heads:", outcomes["heads"])
print("Tails:", outcomes["tails"])

由于只允许两个结果,所以不必使用数字然后再进行转换,这里对choice()使用了单词“heads”(表示面朝上)和“tails”(表示面朝下)。结果以表格形式存储在一个字典中,使用结果名作为键。

1.6 排列

要模拟一个扑克牌游戏,需要把一副牌混起来,然后向玩家发牌,同一张牌不能多次使用。使用choice()可能导致同一张牌被发出两次,所以,可以用shuffle()来洗牌,然后在发各张牌时删除所发的牌。

import random
import itertools

FACE_CARDS = ("J", "Q", "K", "A")
SUITS = ("H", "D", "C", "S")

def new_deck():
    return [
        # Always use 2 places for the value, so the strings
        # are a consistent width.
        "{:>2}{}".format(*c)
        for c in itertools.product(
            itertools.chain(range(2, 11), FACE_CARDS),
            SUITS,
        )
    ]

def show_deck(deck):
    p_deck = deck[:]
    while p_deck:
        row = p_deck[:13]
        p_deck = p_deck[13:]
        for j in row:
            print(j, end=" ")
        print()

# Make a new deck, with the cards in order
deck = new_deck()
print("Initial deck:")
show_deck(deck)

# Shuffle the deck to randomize the order
random.shuffle(deck)
print("
Shuffled deck:")
show_deck(deck)

# Deal 4 hands of 5 cards each
hands = [[], [], [], []]

for i in range(5):
    for h in hands:
        h.append(deck.pop())

# Show the hands
print("
Hands:")
for n, h in enumerate(hands):
    print("{}:".format(n + 1), end=" ")
    for c in h:
        print(c, end=" ")
    print()

# Show the remaining deck
print("
Remaining deck:")
show_deck(deck)

这些扑克牌被表示为字符串,包括面值和一个表示花色的字母。要创建发出的“一手牌”,可以一次向4个列表分别增加一张牌,然后从这副牌中将发出的牌删除,使这些牌不会再次发出。

1.7 采样

很多模拟需要从大量输入值中得到随机样本。sample()函数可以生成无重复值的样本,并且不会修改输入序列。下面的例子会打印系统字典中单词的一个随机样本。

words.txt

pear
apricot
grape
pineapple
apple
peach
banana
plum
watermelon
lemon
orange
mango
strawberry

Demo.py

import random

with open("words.txt", "rt") as f:
    words = f.readlines()
words = [w.rstrip() for w in words]

for w in random.sample(words, 5):
    print(w)

第一次:

第二次:

1.8 多个并发生成器

除了模块级函数,random还包括一个Random类以管理多个随机数生成器的内部状态。之前介绍的所有函数都可以作为Random实例的方法得到,并且每个实例都可以被单独初始化和使用,而不会干扰其他实例返回的值。

import random
import time

print("Default initializiation:
")

r1 = random.Random()
r2 = random.Random()

for i in range(3):
    print("{:04.3f}  {:04.3f}".format(r1.random(), r2.random()))

print("
Same seed:
")

seed = time.time()
r1 = random.Random(seed)
r2 = random.Random(seed)

for i in range(3):
    print("{:04.3f}  {:04.3f}".format(r1.random(), r2.random()))

如果系统上设置了很好的原生随机值种子,那么实例会有独特的初始状态。不过,如果没有一个好的平台随机值生成器,那么不同实例往往会以当前时间作为种子,并因此生成相同的值。

1.9 SystemRandom

有些操作系统提供了一个随机数生成器,可以访问更多能引入生成器的信息源。random通SystemRandom类提供了这个特性,该类与Random的API相同,不过使用os.urandom()生成值,该值会构成所有其他算法的基础。

import random
import time

print("Default initializiation:
")

r1 = random.SystemRandom()
r2 = random.SystemRandom()

for i in range(3):
    print("{:04.3f}  {:04.3f}".format(r1.random(), r2.random()))

print("
Same seed:
")

seed = time.time()
r1 = random.SystemRandom(seed)
r2 = random.SystemRandom(seed)

for i in range(3):
    print("{:04.3f}  {:04.3f}".format(r1.random(), r2.random()))

SystemRandom产生的序列是不可再生的,因为其随机性来自系统,而不是来自软件状态(实际上,seed()和setstate()根本不起作用)。